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J.  Phys. A: Math. Gen. 24 (1991) 1611-1623. Printed in the UK 

Directed percolation front in a gradient 

Stiphane RouxtO and Etienne Guyon$§ 
1 Centre d'Enseignement et de Recherche en Analyse des MatCriaux, Ecole Nationale des 
Ponts et Chaussees, Central IV. 1 Avenue Montaigne, F-93167 Noisy-le-Grand Cedex, 
France 
i Palais de la DCcouverte, Avenue Franklin Roosevelt, F-75016 Paris, France 

Abstract. We study numerically the structure of fronts generated in a directed percolation 
problem in two dimensions when the probability for a bond to be present decreases linearly 
along one direction. We discuss several cases of relative orientation of the preferential 
direction with respect to the gradient. We also consider the Domany-Kinzel limit case of 
directed percolation, and obtain analytical rcsults. The structure of the front is analysed 
using the jump size distribution introduced by Hansen er al. 

1. Introduction 

There has been recently a large number of studies devoted to the structure of fronts 
in various physical systems where disorder is important. Among these we can mention 
percolation fronts in a gradient [2,3], rain model fronts (ballistic deposition of particles) 
[4-61, surface of Eden clusters [7-91 etc. The scaling properties of the front have been 
obtained numerically, or theoretically in some cases. 

We propose in this article to study the geometrical structure of fronts appearing 
i n  a directed percolation process in a gradient. This model can be related to previous 
front models in the case of an extreme disorder. The results obtained for directed 
percolation at threshold, and the one relative to percolation in a gradient seem a priori 
sufficient to understand completely the scaling properties. We will see however that, 
despite the apparent simplicity of the problem, some scaling exponents cannot simply 
be related to the classical properties of directed percolation with no gradient. 

Other motivations for studying this problem can he found in the usual applications 
[ 101 of directed percolation, e.g. chemical reactions, contamination models, cellular 
automata, forest fires,. . . with an overall variation of the control parameter. When the 
preferential direction is considered as being a 'time' parameter, the gradient we consider 
is either a temporal decrease of the presence probability (hereafter model A), or a 
spatial inhomogeneity (models B, C and D). A last reason is the accurate determination 
of a critical control parameter (threshold) for a directed process, and possible com- 
parison with known cases to identify a universaiity ciass. This was the case in [ i j ,  
where Hansen er a1 studied a model similar to one of those we will consider. We will 
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follow the analysis they propose, i.e. studying the jump height distribution in order to 
get some insight in the front structure. 

S Roux and E Guyon 

2. Presentation of the problem 

Let us consider a strip-shaped square lattice whose principal axis forms a ~ / 4  angle 
with !hs !ength nf !he strip zs show= in !igcre I. The bonds in the !"!tic= a:: p:e:en! 
with a probability that varies linearly along the width. At a distance y from a border 
(labelled S in figure l ) ,  the probability that a bond is present is p ( y ) =  1 -y/w where 
w is the width of the strip. Thus the bonds touching S are all present ( p ( 0 )  = l ) ,  whereas 
those on the opposite border are all absent ( p (  w) = 0). The gradient of probability will 
always keep the same orientation in all the cases we will consider hereafter. In figure 
!> we indicate the direction of the gradient with an arrow !abe!!ed G: Nnw, we se!ect 
a 'preferential direction' along one diagonal of the square lattice, i.e. we define an 
orientation of the two principal axes of the lattice. Figure 1 shows these directions for 
various examples with the arrows labelled D. 

Starting from the border S of the strip, we define the cluster of sites which can be 
reached by a directed walk through present bonds, always moving along the preferential 
direction chosen previously. Since no bond can be present along the facing border 
where p = 0, obviously the cluster will be confined strictly inside the strip. We now 
probe the front of this cluster in  a test direction T (shown in figure 1) by looking for 
the first site of the cluster one encounters by moving along one axis of the square 
lattice and starting from the border where no bond is present. This set of sites forms 
the front of the cluster. By construction, this front will depend on the three directions 
G, D and T. Figure l(a-e) shows the relative orientations chosen in three cases which 
will he referred to as A, B and C in the following. We will study numerically the 
structure of the front in these three cases. Let us note that B and C only differ by the 
relative orientation of the test direction T. 

Finally, we will complement our study with a solvable case, shown in figure I(d).  
Domany and Kinzel [ 1 I] have considered a limit case of directed percolation which 
can be solved exactly: along one axis of the square lattice all bonds are present. When 
the probability for having a bond present along the other axis is uniform in space, one 
can map this directed percolation onto a random walk problem, and thus solve it 
exactly. We will show that we can study the structure of the front when a gradient of 
probability is introduced in the model. Figure l ( d )  shows the only relative orientation 
of G and D which gives rise to a non-degenerated front. Let us, however, stress that 
the universality class ofthe Domany-Kinzel problem is different from the usual directed 
percolation case [ 1 I]. 

3. Numerical simulations 

In all cases, A, B and C,  we performed similar computations. Since information can 
only propagate along the preferential direction, it suffices to keep in memory the status 
of the sites located on a section of the strip (along the T direction). By status we mean 
whether the site is part of the cluster or not. The principle of the computation is simply 
to compute the status of the sites located on the next section of the strip, and reiterate. 
The resulting section is then used as the starting condition forthe rest ofthe computation 
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x-1 x x-t 

Model A 

Model 8 

Model C 

Model 0 

Figure 1. T h e  four different models studied in this article. All bonds are present close to 
the lower border ofthe strip, S. The presence probability decreases linearly with the distance 
to S. The arrows G indicate the direction of the gradient of probability. All bonds are 
oriented by the arrows labelled D. The position of the front is characterized in each TOW 

parallel to T by the tap site one can reach with a directed walk starting from S. Cases A, 
B and C differ by the relative orientation of G, D and T. In case D, all bonds are present 
in one direction (north-east). The dots On the figures represent the top Sites (such as i) in 
each row labelled by x. The distance from this site to the S border is called y and is shown 
for model A lor site i 
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where all necessary information about the structure of the front is recorded. The length 
of the strip was chosen to be IO5 in all cases (for all values of the gradient and all 
models). At the start of the computation, the first section has only one site which 
belongs to the cluster (the site which is on the S border). In order to get rid of edge 
effects due to this initial state, we first generate a length of strip equal to ten times its 
width before recording the data. 

We mentioned in the introduction that the probability to have a bond present was 
P\, I = ! -;>/W. Flowever, sicre the fr0.t Is gecerz!!y confined !o a nmcw region c!o:e 
to p ( y ) = p , ,  a large part of the strip is useless. Therefore, in practice, we restricted 
the variation of p ( y )  between two extreme values pminSpSpmax,  chosen such that the 
front never reaches the borders. The gradient g = -dp(y)/dy ranged from 2 x to 

the effective width of the strip was lo3 (and not lo4 as would have 
been necessary if O S p S  1) .  We checked that the front never reaches the two borders, 
go ?ha! !he restricted range pmii .Sp Spmai did no? affect !he s!ruc!ure of !he fro.!. 
the rest of the paper we will, however, refer to the width of the strip that would be 
necessary for p to range from zero to one, or equivalently w = l /g.  

S Roux and E Guyon 

For g =  

4. Results 

By probing the front along lines parallel to T, we get one site i per section. We recorded 
the distance y ,  from this site to the border S, by simply counting the number of bonds 
needed to reach i from S .  The mean distance from the front to the border S is 

where L is the length of the strip. For long enough strips, ( y )  does not depend on L, 
but only on the gradient g. The width of the front, z, can simply be estimated by the 
fluctuation of yj: 

Rather than using the distance, we translate the above quantities into the corresponding 
probabilities, using the linearity of p ( y ) :  The mean distance ( y )  corresponds to a mean 
probability P ( g ) ,  and the width z corresponds to a fluctuation u ( g ) :  

In models A, B and C, P ( g )  converges when the gradient tends to zero to the 
directed percolation threshold on the square lattice. One of the most precise determina- 
tion of this threshold is p c  = 0.644701 * 1 x found in LIZ]. The convergence ot P ( g )  
to pc is well described by the following law: 

P ( g )  = pC+ Ag" (4) 

where a is an exponent which characterizes the approach to the asymptotic threshold. 
This property of convergence has been used to obtain a very accurate determination 

of the non-directed percolation threshold [13]. However, in the latter case, the correc- 
tion exponent a is imply one [ 141. 

Figure 2 shows a log-log plot of the difference IP(g) -p , l  versus the gradient g for 
models A, B and C respectively. From this plot we can extract the values of a reported 
in table 1. The table summarizes the different numerical estimates of the scaling 
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log ( g i  

Figure 2. Log-lag plot of the difference between the directed percolation threshold, p c ,  
and the mean position of the front, P ( g ) ,  as a function of the gradient g. Figures a, b and 
E refer respectively to models A, B and C .  

Tshle 1 

Model (1 b e 
~~ 

A 0 3 1  0.41 2.0 
E 0.47 049 2.8 
C 0.47 C 4 8  2.74 
D i 0.5 

in this article. For ma exuonents a. b and c in the four models studie D, the 
exponent a can assume different values according to the choice of the origin of 
probability. The presented derivation leads to a 2 2 whereas the generic case is a = 1 .  
,,,,> ,a>, ICbUIL,  W l l l C l l  ,> L l l c i  l l l U l C  ,,,C'l,,,,,&Ut 13 quursu 111 LIIC L'lLvIC. 

Using these estimates of the exponent a,  we checked that the value of the threshold 
pc obtained by fitting P ( g )  versus g" was consistent with the estimate used previously. 
In all c a e s  A, B and C, we obtained pc  = 0.6447 * 0.0001, 

[ l l ] .  We 
will show that the systematic deviation from this value obtained for a non-zero gradient 
is at  most of the order g2. Tkcs the expenen! n is !arger thac or eqaa! tn t-wo I:: this 
case. However, a difference that corresponds to less than a lattice spacing is not 
meaningful since it depends on the details of the discretization. Indeed, suppose we 
change the origin by one lattice spacing, then the mean position of the front is moved 
by I / w  =g, introducing a correction term with an exponent a = 1. Therefore, in this 
model the generic exponent is a = 1, and the value a 3 2 can be reached only for a 

The width of the front z diverges for all cases when the gradient decreases. However, 
when translated in terms of probability, v ( g )  = gz goes to zero with g. More precisely 
the following dependence is observed: 

IL:"  I I. ... L:^L :-.I-- ---..:.."c.., :" ̂ _.^.^-I :.. .L^ .-La- 

For the Domany-Kinzel case, D, the threshold is known to be exactly 

very precise choice of the origin. !n !&!e I ,  we report the generic vz!!!e 1. 
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Figure 3 shows the log-log plot of u ( g )  versus g for cases A, B and C. The measured 
exponent is reported in table 1. 

Both exponents a and b are needed to characterize the approach to p c .  One indicates 
the distance from the mean position of the front to the threshold, while the other gives 
the sharpening of the front. Large values of these exponents will be favourable to an 
accurate determination of the threshold when the latter is unknown. On the contrary, 
small values will go against this trend. 

Generally, the width of the front is obtained [2,3] by writing that at the extreme 
ends of the front, the correlation length, 5, is equal to the distance to threshold. Using 
the divergence of 5 at threshold as 

S Roux and E Guyon 

5“ I P -Pel-" ( 6 )  

one gets 

Hence, the width of the front expressed in lattice units is 

5“ g-””’+”’. 

When measured by the probability scale, the width of the front amounts to 

(9) 

Let us notice that g diverges when g tends to zero, hut n ( g )  decreases to zero. The 
smaller the gradient, the steeper the front measured by the probability scale. This 
property is the basis of the determination of the threshold using a finite gradient 
[13,  141. The scaling argument presented above is very general and has numerous 
applications for critical phenomena in an external field, or with a temporal or spatial 
variation of the control parameter. In experiments, the use of a gradient in the control 
parameter has also often been used to characterize preciseiy a critical threshold. The 
shift in the value of the threshold, as well as the smearing of the transition, are generally 
found to vanish critically as the gradient goes to zero as is the case in the examples 
we study here. 

I l ( l + ” l  
4 g ) = g 5 “ g  . 

- 4  - 3  - 2  
loglgl 

Figure 3. Log-log plot of the width of the front, v(g), as a function of the gradient g. 
Figures a, b and c refer respectively to models A, B and C.  
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In the case of directed percolation some care has to be taken to apply this argument. 
Two correlation lengths can be defined: one parallel to the preferred direction 511, and 
one perpendicular to it, tL. Each one is characterized by a different critical exponent: 

For cases B and C ,  the gradient is orthogonal to the preferential direction, and 
~~~=1.7334f0.0005 and uL= 1.0972*0.0004 [12]. 

thus we are led to use (8) with uL, or 

Numerically, b =0.4768 in good agreement with the estimates obtained in the simula- 
tions (see table 1). The fact that cases B and C give the same results is natural since 
their only difference is the way of probing the front. The clusters generated are identical 
in both cases. 

For case A, the geometry is such that the expected result is 

or bz0.3658.  Numerically, this exponent is found to lie in between the two values 

arithmetic mean, U = ( uII + v,)/2 gives a numerical value close to the measured exponent 
but we have no convincing argument to use such a combination. 

Case D can be analysed exactly. The appendix gives the details of the computation 
for the whole profile of the front. Let us here simply consider the average height and 
width of the front. The front in each section is entirely determined by the position of 
the top site. Knowing this site in one section, i: the probability that the top site in the 
following section is j is given by  a matrix element 7;, given in the appendix (equation 
Al) .  Let us consider that i is given. The mean value of y ( j )  is 

(eqxtio.. 10 .!Id I!), with error blrs fha! cxc!udc both suggestions. IJsing the 

( y ( j ) ) = X  Z 4 k ) .  (12) 
k 

We consider the limit of a vanishing gradient g such that the product y ( i ) g =  
q(x)-which gives the position of the top site measured by the presence probability-is 
finite. The reason to impose such a limit is that we expect, according to the previously 
mentioned argument, that q, on average, will approach the threshold value. After some 
tedious but simple computations, we get 

(13) 

The average position of the front, P ( g ) ,  is simply obtained by writing that ( q ( x +  I ) ) =  
(9(x))= P ( g )  and solving (13) for P ( g ) .  We obtain 

P ( g )  =f+O(g2). (14) 

Expressed in terms of probability, the average height o i  the iront indeed converges 
towards the threshold, which for the Domany-Kinzel case is f .  The correction term is 
analytic in g with an exponent larger than or equal to two. As mentioned previously, 
in the generic case, an exponent a = 1 is expected if the origin of probability is chosen 
differently by, say, one lattice constant. 
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As can be seen from (13), the fixed point of the transformation P ( g )  is stable. Any 

(15) 
Since the factor (1 -4g) is less than 1, the front is attracted toward its equilibrium 
value. This suggests the following analogy: the mean position of the front can be seen 
as a random walk in a potential well. It can be described by the Langevin equation: 

perturbation from this value will decrease: 

( q b +  0-m) = (1 - 4 g ) ( ( q ( x ) ) - P ( g ) ) + O ( g Z ) .  

where V(q) is the potential, and 7 a Gaussian noise term. As previously, the x direction 
is along the mean direction of the front, whereas q is perpendicular to it. From (15) 
we deduce that at the first order in g is perpendicular to it. From (15) we deduce that 
at the first order in g the potential is harmonic, and can be written: 

v(q)=2g(4-5)2. (17) 
Naturally, in the limit of a zero gradient, we recover the analogy between the directed 
percolation problem and the random walk with no bias. The mean width of the front 
is such that V(f+u)  =constant thus (or b =f) .  The appendix provides an exact 
derivation of the whole profile probability which will be shown to converge towards 
a Gaussian. As a consequence, U can be computed exactly, and we will show that 
U=& (with a unit prefactor). 

In this case, the correlation length exponents are u1 = 1 and U,, = 2. Thus we see 
that b satisfies (10) as expected from the relative orientation of D and G. 

5. Jump size distribution 

As mentioned in the introduction, Hensen et al [l] studied a case related to our 
problem. Namely, they studied directed site percolation in a gradient with a geometry 
similar to our case C .  The key of their theoretical analysis lies on the notion ofjump-size 
distribution. Let us recall their basic results: 

When probing the front, the position of the top site jumps from one row to the 
next. The jumps will be the difference in height between two consecutive rows, 
( h ( x )  = y ( x ) - y ( x +  1)). Let us distinguish between the negative jumps, which corre- 
spond to a move of the front position away from the base line S, and positive jumps, 
which move towards S .  On average the location of the front remains constant, close 
to the percolation threshold. Calling n ( h , g )  the probability of having a jump h with 
a gradient g, we can write the balance equation: 

for all values of g. 
The dependence of n ( h ,  g )  with h is very different when h is positive and when it 

is negative. Let us first consider negative jumps. 
The simpler case is model C .  In this case, the jumps cannot be smaller than -1, 

because of the orientation of the preferred direction. The probability of having h = -1  
is simply nc(-l,g)=p,(g). Thus we can rewrite (18) as 
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For models A and B, the conclusion is very similar, although the RHS of ( 1 9 )  is 
slightly more complicated. Indeed for model A the probability of having a negative h 
is nA(h, g)=pc(g)(2-p,(g))(l - p c ( g ) ) p c ( g ) h - ' ,  whereas for model B it is n , ( h , g ) =  
(1 -p,(g))p,(g)h. In both cases the distribution is exponential, and the sum X h d h ,  g )  
for negative h can be performed easily: 

h>O 

In all cases, the first moment of positive jumps is finite and non-zero. Expanding 
this first moment for pc(g)  close to pc allows us to derive the leading correction term, 
and thus the exponent a. In order to do  so, we need some more information about 
n ( h ,  g )  for positive h. We again follow closely [ I ] .  

When no gradient is included in the model, i.e. p=pc everywhere in the lattice, 
the jump size distribution for positive h is a power-law 

n ( h ) W h - ' .  (21) 

n(h,  g )  = h-'+(h, g d )  (22) 

A non-zero gradient introduces a cut-off in the distribution, which can then be written 

where the function $(x) is constant for XC< 1, and converges to zero faster than any 
power law for x +  +w. The maximum jump, h,,,, is thus of the order of g - d .  Hansen 
et a/ [I] propose t: relate this cut-off to the width of the front 

ghmax= e gb (23) 

or d = 1 - b. In [I], the exponent d was suggested to be u J ( 1 f  vL) ,  in agreement with 
( l o ) ,  for model C. However, the corresponding expected values for models A and B 
that we can deduce from this (cf. previous discussion) are not found. 

The exponent c has been suggested [ I ]  to be equal to 3 - p l y l  for model C, where 
p is the critical exponent of the probability to belong to the infinite cluster P,cc( p -pJp. 
In  two dimensions, p = 0.2801 0.004. The condition that the first moment is independent 
of g at the first order imposes that c a  2. Studying the directed site percolation problem 
in a gradient in higher space dimensions [ 121, Hansen et al reported that the distribution 
of jumps turned out not to be critical. In this case the distribution was a power-law 
with an exponent c = 2, up to logarithmic terms. 

Hansen et a /  [ I ]  concluded their analysis by using the expression of the jump size 
distribution in order to obtain the leading correction term to the mean position of the 
front. We have seen through ( 1 9 )  and (20), that the first moment of the positive jump 
size distribution was an analytic function of p&) for all cases considered. Expanding 
this function around pc gives a correction to the first moment similar to the correction 
term for p&) itself. Different corrections terms can appear. As suggested in [I], the 
corrections are given by the singular parts of the first moment computed using the 
expression (22), i.e. 1 hn(h,  g )  =I h ' - " + ( h g d )  dhlSi.,. The upper bound of this integral 
gives a singular term proportional to g-"'*-" , whereas the lower bound gives a term 
proportional to 9'. Considering these two possibilities, the leading correction exponent 
a is 

a=min(d,  d ( c - 2 ) ) .  (24) 
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O 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
log i l l  

0 2  0 4  0 6  0 8  10 1 2  1 L  1 6  1 8  2 0  

log I, I 

Figure* Log-log plot ofthe jumpdistribution n ( h )  as a function ofh, forazerogradient, 
i.e. p = p I  everywhere in the lattice. Figures a, b and c refer respectively to the orientations 
of D and T as in models A, B and C. 
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When c C 3, the dominant correction is expected to be given by a = d(c - 2) otherwise, 
a = d. In the example studied by Hansen ef a/ [ 11, it turned out that the leading 
correction term, i.e. the lower exponent, was hidden because of the small value of the 
prefactor of this term. 

We have checked numerically the power-law distribution in all cases with no 
gradient. Figure 4(a-c) gives the log-log plot of this distribution for the three models. 
We observe a power-law behaviour with an exponent c respectively equal to 2.0, 2.8 
and 2.74 as reported in table 1. We see a good agreement with the expected value for 
cases B and C, 3-p/v,=2.75. For model A, it turns out that the exponent c = 2  is 
extremely close to the lower limit necessary to have the first moment convergent. It is 
interesting to note the analogy with the case of higher space dimensionalities considered 
by Hansen and Houlrik [ 151 where above an upper critical dimension, c = 2. 

We also checked that the presence of the gradient only generated a cut-off in the 
distribution, without altering the value of the exponent c. The scaling of the cut-off 
was found to be given by the width of the front itself, i.e. d = 1 - b. 

In cases B and C, the agreement with the expected a exponent is reasonable since 
the dominant correction to scaling may he hidden due to the smallness of the first 
prefactor. The measured a exponent is 0.47, while the second expected value is d = 0.52. 
For case A, however, the observed correction term is more singular than expected. 

6. Conclusion 

Despite the apparent simplicity of the problem, it appears that the scaling properties 
of the front geometrical characteristics are difficult to be account for. It would be 
extremely useful to be able to relate the measured exponents to known critical indices 
appearing in directed percolation. 

The case of higher dimensions, investigated in [15] is amenable to a similar 
treatment. The sensitivity of the problem to the respective orientation of the gradient, 
the preferred direction and the probing direction would again be interesting in order 
to address the concrete problem of fronts in 2 f l  directions, i.e. the most common 
case. It would be also of interest to study cases out of equilibrium, such as an invasion 
percolation problem with a destabilizing gradient such as studied by de Arcangelis 
and Herrmann [16], in a different context. 
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Appendix 

In this appendix we investigate analytically the shape of the front in the Domany- 
Kenzel limit (model D). As noted in the main text, the cluster will be compact since 
all bonds are present in one direction. Thus the front is uniquely determined in a 
section if we know the top site, say i. The probability T, that the front at the next 
section is located at a site j can easily be computed. If j >  i +  1, K, = O  since the front 
cannot jump by more than one lattice unit. If j s i +  1, the leading to site j must be 
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present (probability p ( j ) )  whereas all bonds starting from sites k = j +  1 to k = i must 
be absent (probability 1 - p ( k ) ) .  Therefore the matrix element T, is equal to: 

S Roux and E Guyon 

We look for the probability density of the location of the front. Let us write w, the 
probabiiity thai the Froni site is at siie i. Tie  basis of the computation is to note that 
the vector a; is invariant when we go to the following section, or 

(A2) 

The vector a is thus the eigenvector of the matrix Tr with the largest eigenvalue 1. 
Let us do the following change of variable: 

1 w.T.. = 1 ~ .  
I 1, J' 

[ i + l ) !  
a , = n ' + l w ,  

Equation (A2) now reads 

We introduce the sum X:Z; a, = b, and rewrite (A4) as 

(1 -:) (T) bi_,  = bj - bc+l. 

The use of the ratio cj = b,/bj-l allows us to simplify the latter equation, and gives 

' l + l '  
= c,(l -Cc+,) .  

One sees from (A6) that c, = 1 - i / n  is a particular solution of the recurrence relation 
(A6). Since c. = b, = a, = 0, this particular solution is the solution we look for. Introduc- 
ing this expression in the definition of bj gives 

i i  ! 
6, = b, 

( n  - i -  1 ) !n '  

and thus 

n ! ( i + l )  
( n  - i -  l)!n'+l 

ai = b, 

and finally 

a; = ( : ) ( n  - i)b, 

The normalization of the probability >: ai = 
and >: i ( ? )  = n2"- ' ,  we obtain 

b, = l /(n2"-') 

and finally, we can write the probability vector 

m es the vs e c  Jsi 
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It is interesting to consider the large n limit, i.e. small gradient, with the requirement 
that the ratio i l n  = 9 is finite, as seen in the main text. Calling g = 1 / n  the gradient 
of probability, and using Stirling formula, the probability mi can be written as 

w , = 2  E - ( Z q V ( 1  - 9 ) ( l - d - 1 / ' l ,  (Al2)  

We introduce the continuum probability density h ( 9 ) d q  which gives the probability 
that the front height is between q and 9 + dq. We have h ( q )  = m i / g  for i such that ig = 9 

(A131 

From (A13), we can compute the shape of the distribution in the vicinity of q = i. We 
obtain a Gaussian profile with a mean f and a standard deviation equal to &. Thus 
the exponent b is equal to f ,  as mentioned in table 1. 
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